

18ME32

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Mechanics of Materials

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. A mild steel bar of 25 mm diameter and 200 mm gauge length has an extension of 0.15 mm under a load of 75 kN . Load at elastic limit is 160 kN and maximum load is 250 kN . Total extension is 55 mm . Diameter at failure is 18.5 mm . Find i) Elastic limit ii) Young's modulus iii) Percentage elongation iv) Percentage reduction in area.
(06 Marks)
b. A tapered bar of length ' L ' having rectangular cross - section of constant thickness ' t ' is subjected to a tensile force P. Find extension of the bar.
(08 Marks)
c. Draw typical stress - strain curve for i) Mild steel ii) Aluminum and
iii) Brittle material.
(06 Marks)
OR
2 a. A composite bar is rigidly fitted at the support A and B as shown in Fig. Q2(a). Determine the reactions at the supports when temperature rises by $20^{\circ} \mathrm{C} . \mathrm{E}_{\mathrm{Al}}=70 \mathrm{GPa}, \mathrm{E}_{\mathrm{St}}=200 \mathrm{GPa}$ $\alpha_{\mathrm{A} 1}=11 \times 10^{-6} /{ }^{0} \mathrm{C}$ and $\alpha_{\mathrm{St}}=12 \times 10^{-6} /{ }^{0} \mathrm{C}$.
(08 Marks)

Fig. Q2(a)

b. Define 'Bulk modulus'. Obtain an expression relating Young's modulus, Bulk modulus and Poisson's ratio.
(06 Marks)
c. A 500 mm long bar has rectangular cross - section $200 \mathrm{~mm} \times 40 \mathrm{~mm}$. This bar is subjected to
i) 40 kN tensile force on $20 \mathrm{~mm} \times 40 \mathrm{~mm}$ faces
ii) 200 kN compressive force on $20 \mathrm{~mm} \times 500 \mathrm{~mm}$ faces and
iii) 300 kN tensile force on $40 \mathrm{~mm} \times 500 \mathrm{~mm}$ faces.

Find change in volume if $\mathrm{E}=200 \mathrm{GPa}$ and $\mu=0.3$.
(06 Marks)

Module-2

3 a. Obtain expressions for normal and shear stress acting on a plane XX shown in Fig. Q3(a).
(10 Marks)

Fig. Q3(a)

b. Draw Mohr's circle and find
i) Maximum shear stress if $\sigma_{x}=40 \mathrm{MPa}, \sigma_{y}=20 \mathrm{MPa}$ and $\tau_{\mathrm{xy}}=0$.
ii) Principal stresses if $\sigma_{\mathrm{x}}=0, \sigma_{\mathrm{y}}=0$ and $\tau_{\mathrm{xy}}=25 \mathrm{MPa}$.
(10 Marks)

4 a. A thin cylinder of internal radius r_{i}, thickness t, length ' ℓ ' is subjected to internal pressure p_{i}, find i) expressions for hoop stress and longitudinal stress
ii) expression for volumetric strain.
(10 Marks)
b. A thick cylinder of outside diameter 300 mm and thickness 50 mm is subjected to an internal pressure of $40 \mathrm{~N} / \mathrm{mm}^{2}$ and an external pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$. Find maximum and minimum values of hoop stress and radial stress, Plot the stress variations across the cylinder section.
(10 Marks)

Module-3

5 a. Obtain expressions relating load, shear force and bending moment.
(06 Marks)
b. Draw the bending moment and shear force diagrams for the beam shown in Fig. Q5(b) indicating values at important sections. Also find the positions of i) Maximum bending moment ii) Maximum shear force and iii) Point of contraflexure.
(14 Marks)

Fig. Q5(b)

OR
6 a. Stating the assumptions of Pure bending theory, derive

$$
\frac{\mathrm{M}}{\mathrm{I}}=\frac{\sigma}{\mathrm{Y}}=\frac{\mathrm{E}}{\mathrm{R}} .
$$

(10 Marks)
b. A wooden beam 10 m long, 360 mm deep and 300 mm wide is simply supported and loaded with uniformly distributed load for the entire length. Maximum stress intensity of the material is 60 MPa . Find the safe ud ℓ if factor of safety $=6$.
(10 Marks)

Module-4

7 A solid circular shaft is subjected to a bending moment of $9000 \mathrm{~N}-\mathrm{m}$ and a twisting moment of $12000 \mathrm{~N}-\mathrm{m}$. In a tensile test of the same material, it gave the following details:
Stress at yield point $=300 \mathrm{Mpa} ;$ Modulus of elasticity $=200 \mathrm{GPa} ;$ Poisson's ratio $=0.25$.
Assuming factor of safety $=3$, find the least diameter required according to i) Maximum Principal stress theory
ii) Maximum Shear stress theory.

OR

8 a. State the assumptions of 'Pure torsion' theory and prove

$$
\frac{\tau_{\max }}{\mathrm{r}_{0}}=\frac{\tau}{\mathrm{r}}=\frac{\mathrm{G} \theta}{\mathrm{~L}} .
$$

(08 Marks)
b. A hollow circular shaft with a 250 mm external diameter and thickness of metal 25 mm transmits power at 180 rpm . The angle of twist over a length of 3 m was found to be 0.72°. Calculate the power transmitted and the maximum shear stress induced. Modulus of rigidity $=84 \mathrm{GPa}$.
(12 Marks)

Module-5

9 a. Obtain an expression for Euler's critical load for a long column with both ends pinned.
(10 Marks)
b. State the assumptions made in Euler's theory and explain limitations of Euler's estimation of critical load.
(10 Marks)

OR

10 a. What is Strain Energy? Explain in brief.
(05 Marks)
b. Obtain an expression for strain energy due to shear stresses.
c. Determine the ratio of strain energy stored in two bars of the same material shown in Fig. Q10 (c), if the gradually applied load is same.
i)

ii)

Fig. Q10(c)

